Lecture 8 - 06/11/2024

The *p-n* junction

- Basic considerations
- At thermal equilibrium
- Space charge region

Summary Lecture 7

Carrier mobility at low electric field

$$v_d = \mu_0 E$$

 μ_0 ... low field mobility

$$\frac{1}{\mu_0} = \frac{1}{\mu_{\rm LA}} + \frac{1}{\mu_{\rm LO}} + \frac{1}{\mu_{\rm ion}} + \cdots \text{ Matthiessen rule}$$

Out of equilibrium semiconductors

 $pn \neq n_i^2$ due to excess carriers injected by electrical or optical means

$$\frac{\partial n}{\partial t} = G - R + \left(\frac{1}{e}\right) \nabla \cdot \mathbf{J_n}$$

$$\frac{\partial p}{\partial t} = G - R - \left(\frac{1}{e}\right) \nabla \cdot \mathbf{J_p}$$

$$\frac{\partial p}{\partial t} = G - R - \left(\frac{1}{e}\right) \nabla \cdot \mathbf{J_p}$$

$$processes to restore equilibrium (processes to restore equilibrium$$

Carrier mobility at high electric field

$$v_d = \mu_0 \, E \sqrt{\frac{T}{T_e}}$$
 T_e ... Carriers' effective temperature T ... Lattice (phonon) temperature

$$\frac{T_e}{T} = \frac{1}{2} \left[1 + \sqrt{1 + \frac{3\pi}{8} \left(\frac{\mu_0 E}{c_s} \right)} \right] \qquad c_s \dots \text{ velocity of sound}$$

$$v_s = \sqrt{\frac{8E_{ph}}{3\pi m^*}} \approx 10^7 \, \mathrm{cm/s}$$
 $v_s \dots$ saturation velocity $E_{ph} \dots$ optical-phonon energy

$$G = G_{th} + G_L$$

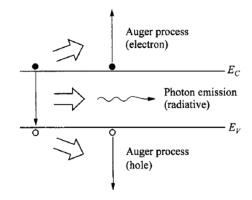
processes to restore equilibrium $(pn = n_i^2)$:

$$pn > n_i^2 \dots$$
 recombination, rate R

$$pn < n_i^2$$
 ... thermal generation, rate G_{th}

Summary Lecture 7

Band-to-band recombination – photon emission


Far more probable in direct-bandgap SCs weak to moderate injection ($\leq 10^{18}~{\rm cm}^{-3}$):

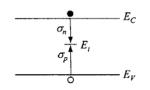
$$R \,-\, G_{th} = egin{cases} 0 & ext{thermal equilibrium} \ rac{n-n_0}{ au_n} & ext{p-type} & ppprox p_0 \ \ rac{p-p_0}{ au_p} & ext{n-type} & npprox n_0 \end{cases}$$

Band-to-band recombination – Auger-Meitner process

At play in both direct- and indirect-bandgap SCs high injection ($> 10^{18} \, \mathrm{cm}^{-3}$):

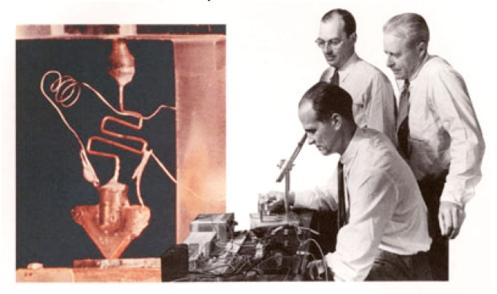
$$R_A - G_{th} \propto egin{cases} p^2 n & extit{p-type} & p pprox \Delta p \ n^2 p & extit{n-type} & n pprox \Delta n \end{cases}$$

Single-level recombination - traps


Dominating at low injection in both direct- and indirect-bandgap SCs

- (1) electron capture from CB
- (2) electron emission to CB
- (3) hole capture from VB
- (4) hole emission to VB

$$\frac{dn}{dt} = G_L + R_n = G_L + r_{e,n} - r_{c,n}$$


$$R_n = r_{e,n} - r_{c,n} = v_{th}\sigma_n(nN_t^{\times} - n_tN_t^{-})$$

$$N_t^{\times} = N_t(1 - f), \quad N_t^{-} = N_t f$$

1st *p-n* junction and 1st transistor (1947)

First transistor Bardeen, Shockley and Brattain 1947

Point contact transistor

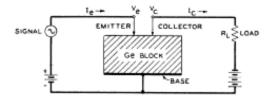
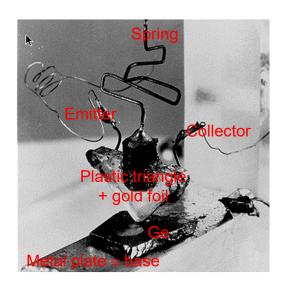
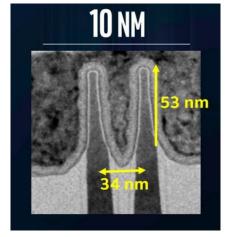
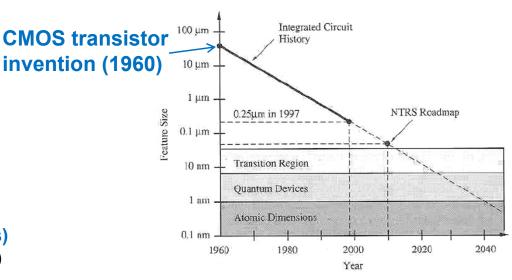



Fig. 1. Schematic of semi-conductor triode.

J. Bardeen and W. H. Brattain, Phys. Rev. **74**, 230 (1948) > 520 citations

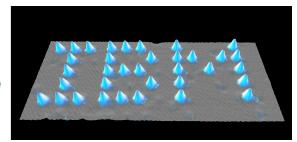
Nobel prize in physics 1956

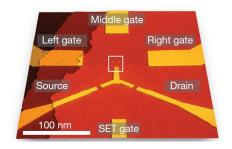

Transistor: past... and ...future


First integrated circuit (few transistors)

Jack Kilby, TI - 1958 - Nobel prize (2000)

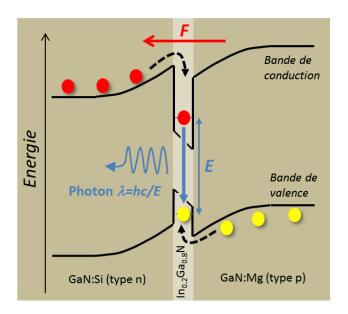
Dimension: 11 × 1.6 mm²




Intel 10 nm process node

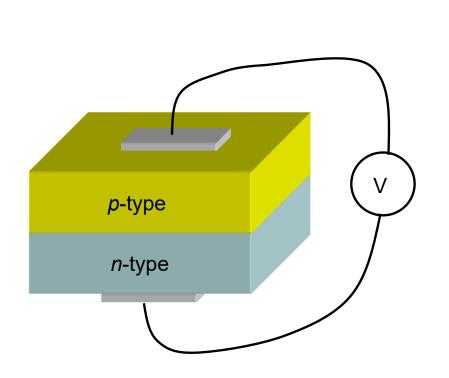
National technology roadmap for semiconductors (NTRS)

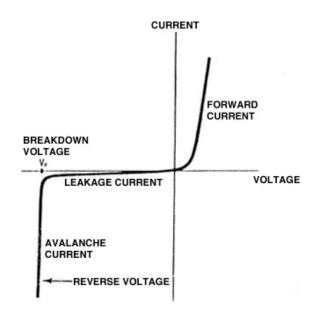
Now ITRS (I: international)


Y. He et al., Nature **571**, 371 (2019)

> 230 citations

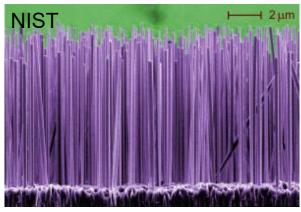
p-n junction


Some applications

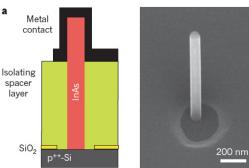

- Bipolar transistors
- LEDs
- Laser diodes
- Solar cells
- Photodetectors

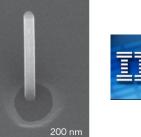
p-n junction (2D-geometry)

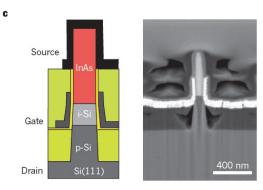
Made of two adjacent semiconductor layers which are p-type and n-type doped


A p-n junction behaves like a diode (rectifying behavior)

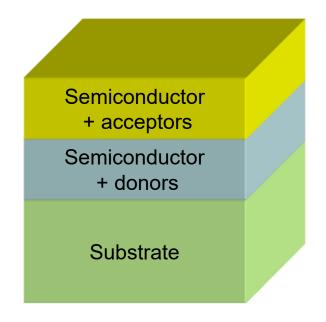
Early historical account detailed in: W. Shockley, Bell Syst. Tech. J. **28**, 435 (1949); C.-T. Sah, R. N. Noyce, and W. Shockley, Proc. IRE **45**, 1228 (1957) > 1600 citations

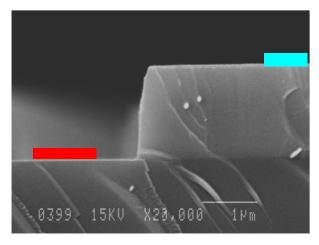

p-n junction (research, nanowire geometry)


Semiconductor nanowires (candidates for tunnel-FETs)



Subthreshold swing < 60 mV/decade at 300 K (cf. forthcoming Lecture 9)

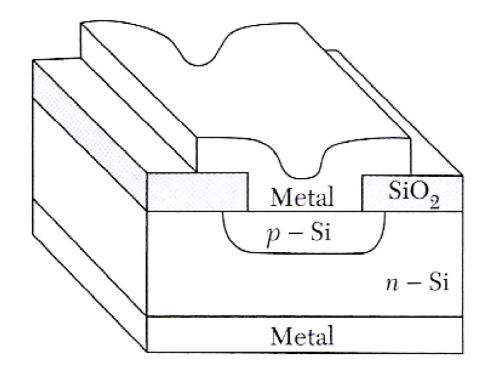




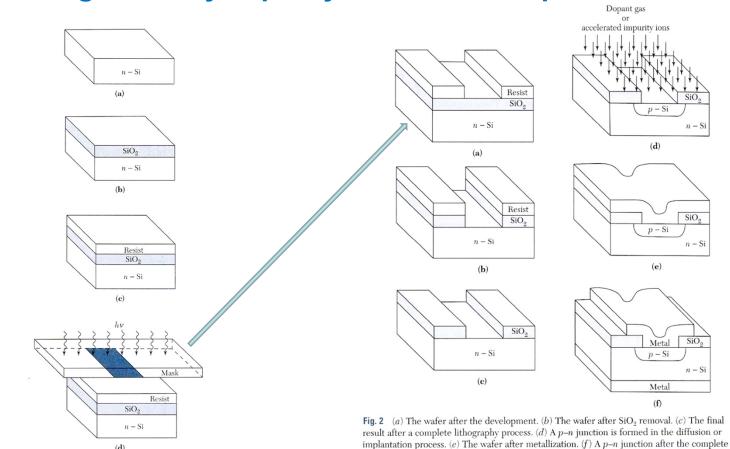
A. M. Ionescu and H. Riel, Nature **479**, 329 (2011) > 2200 citations

p-n junction fabrication

During growth by impurity incorporation

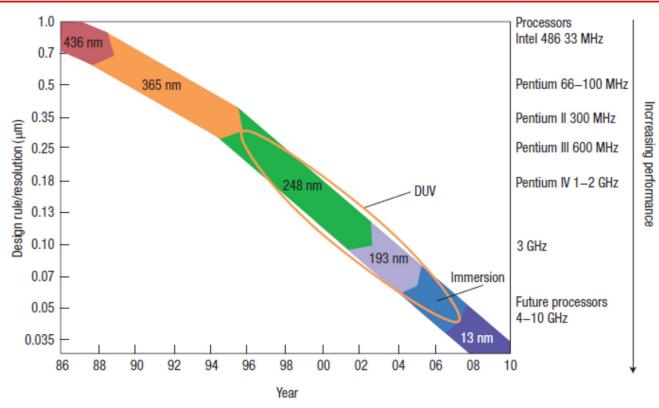


SEM image of a *p-n* junction (LED)


p-n junction fabrication

Post-growth: by impurity diffusion or implantation

p-n junction fabrication


Post-growth: by impurity diffusion or implantation

processes.

Fig. 1 (a) A bare n-type Si wafer. (b) An oxidized Si wafer by dry or wet oxidation. (c) Application of resist. (d) Resist exposure through the mask.

Optical lithography

Speed/power tradeoff ⇒ CPU underclocking can save a lot of power while sacrificing much less the performance (motivation for multicore CPUs)

Example: Intel chips (2008), single core underclocking by 20% will save half the power for 13% less performance!

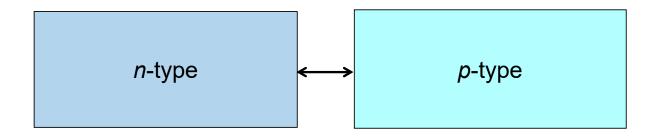
Optical lithography

The fabrication of integrated circuits (ICs) relies on expensive photolithography systems

Patterns optically imaged onto Si wafers covered with a photoresist

- Leading company: ASML (Dutch), >3/4 of the market ⇒ provider of immersion and EUV lithography machines (sole supplier of EUV tools, market capitalization in 2024 ~US\$400 billion)
- Other players: Canon, Nikon, Ultratech (now part of Veeco Instr.) (USA)

Optical lithography machines set the transistor technology node, i.e., the typical halfpitch (≡ half distance between identical features in an array) for a memory cell. 22 nm technology node for the CMOS process, e.g., multicore processors. 14 nm technology node introduced by Intel at the end of 2014 (broad OEM, 2015)


Optical lithography

New generation of wafer stepper:

- Lens-free optical lithography
- All-mirror-based technology operating in the extreme UV (13.5 nm), hence under vacuum (to avoid air absorption)
- Used by Intel, IBM, Samsung and TSMC
- Cost up to 200 M\$/unit for the Twinscan NXE:3600D

p-n junction: how does it work?

Case of the abrupt *p-n* junction (metallurgical junction)

At thermal equilibrium

$$E_{\mathsf{F}}$$
 E_{V} E_{V}

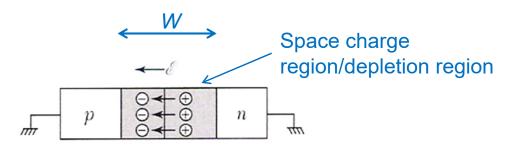
- Concentration gradients ⇒ diffusion currents
- Uncompensated ionized impurities ⇒ built-in electric field ⇒ drift currents

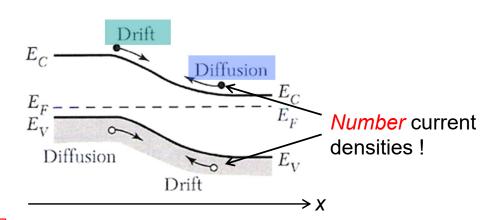
p-n junction at equilibrium

Diffusion and drift currents

$$J_{n,drift} = \sigma_n \mathbf{E} = e \mu_n n \mathbf{E}$$

$$J_{n,diff} = eD_n \operatorname{grad} n$$


Einstein relation:


$$\frac{D}{\mu} = \frac{k_{\rm B}T}{e}$$

Diffusion coefficient in cm² s⁻¹

Link between *number* (*j*) and *electrical* (*J*) current densities:

$$\mathbf{J}_n = -e\mathbf{j}_n$$

and $\mathbf{J}_p = e\mathbf{j}_p$

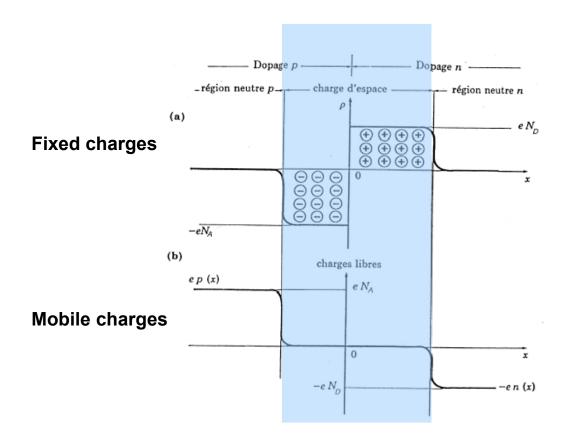
At thermal equilibrium

The Fermi level is constant throughout the structure (details to be seen in the series)

$$J_n = J_{n,\text{drift}} + J_{n,\text{diff}} = 0$$
 (also true for holes)

NO "net" current flowing through the junction

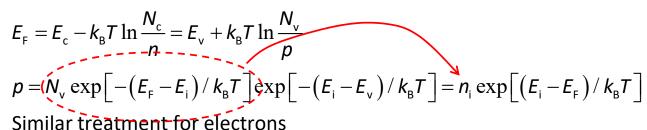
To be verified in the exercises


$$J_{n} = e \mu_{n} nE + eD_{n} \frac{dn}{dx} = \mu_{n} n \frac{dE_{F}}{dx} = 0$$

Keep in mind that Ohm's law is valid provided $v_{\rm d} << v_{\rm th}!$

1D case

Full compensation between the drift and diffusion currents!

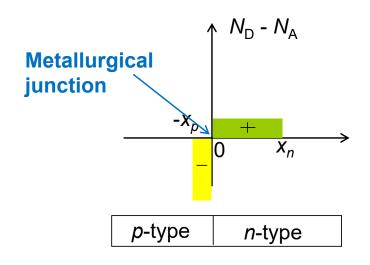

Space charge

At thermal equilibrium

Built-in potential:

$$eV_{bi} = (E_F - E_i)_n - (E_F - E_i)_p \equiv \text{energy loss across the junction}$$

with


 $\frac{E_{\rm F} - E_{\rm i}}{eV_{\rm bi}}$ $\frac{E_{\rm F} - E_{\rm i}}{eV_{\rm bi}}$ $\frac{E_{\rm F}}{E_{\rm i}} E_{\rm F} - E_{\rm i}$ $\frac{E_{\rm F}}{E_{\rm i}} E_{\rm F} - E_{\rm i}$ $(n \approx N_{\rm D} \text{ and } p \approx N_{\rm A})$

If we consider that all impurities are ionized

$$eV_{bi} = E_{g} - k_{B}T \ln \left(\frac{N_{v}N_{c}}{N_{A}N_{D}} \right)$$
 Built-in barrier

This built-in potential V_{bi} is the consequence of the space charge due to carrier diffusion

Abrupt junction Poisson's equation to be solved as a function of position:

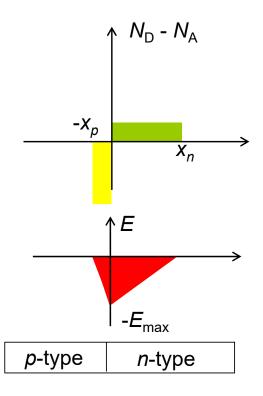
$$\left| \frac{d^2 \phi}{dx^2} = -\frac{\rho(x)}{\varepsilon_r \varepsilon_0} \right|$$
 Electrostatic potential vs position

$$\frac{d^2\phi}{dx^2} = e \frac{N_A}{\varepsilon} \quad \text{for} \quad -x_p \le x < 0$$

$$\frac{d^2\phi}{dx^2} = -e \frac{N_D}{\varepsilon} \quad \text{for} \quad 0 < x \le x_n$$

$$\int_{-x_p}^{x_n} \rho dx = 0$$

Charge neutrality: $x_p N_A = x_n N_D$

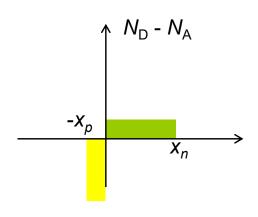

Space charge region extent: $W = x_p + x_n$

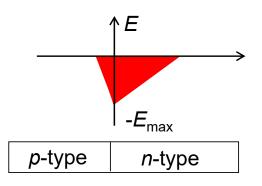
Electric field in the space charge region

$$E(x) = -\frac{d\phi}{dx} = -e\frac{N_{A}(x + x_{p})}{\varepsilon} \quad \left[-x_{p}, 0 \right]$$
$$E(x) = -\frac{d\phi}{dx} = e\frac{N_{D}(x - x_{n})}{\varepsilon} \quad \left[0, x_{n} \right]$$

$$|E_{\text{max}}| = e \frac{N_{\text{A}} x_p}{\mathcal{E}} = e \frac{N_{\text{D}} x_n}{\mathcal{E}}$$

Abrupt junction


$$\begin{aligned} V_{\text{bi}} &= -\int_{-x_p}^{x_n} E(x) dx \\ &= e \frac{N_A}{\varepsilon} \int_{-x_p}^0 (x + x_p) dx - e \frac{N_D}{\varepsilon} \int_0^{x_n} (x - x_n) dx \\ &= e \frac{N_A x_p^2}{2\varepsilon} + e \frac{N_D x_n^2}{2\varepsilon} \\ &= \frac{E_{\text{max}} x_p}{2} + \frac{E_{\text{max}} x_n}{2} = \frac{1}{2} E_{\text{max}} W \end{aligned}$$


Note that:
$$V_{bi} = \frac{1}{\varepsilon} \int_{-x_p}^{x_n} \left[\int_{-x_p}^{x} \rho dx \right] dx$$

which can also be written:

$$V_{\text{bi}} = \frac{1}{\mathcal{E}} \int_{-x_p}^{x_n} x \rho dx$$

Abrupt junction

$$V_{bi} = e \frac{N_A X_p^2}{2\varepsilon} + e \frac{N_D X_n^2}{2\varepsilon}$$
Charge neutrality: $x_p N_A = x_n N_D$

Space charge extent: $W = x_p + x_n$

$$\Rightarrow W = x_p (1 + N_A/N_D) = x_p (N_D + N_A)/N_D$$

$$W = x_n \dots$$

$$W = \sqrt{\frac{2\varepsilon}{e} \left(\frac{N_{A} + N_{D}}{N_{A} N_{D}}\right) V_{bi}}$$

All the parameters entering into this expression are known beforehand!

Extent of the space charge region

Example: silicon-based *p-n* junction at 300 K

$$n$$
-type: $N_{\rm D}$ = 10¹⁸ cm⁻³ and $p = n_{\rm i}^2/N_{\rm D}$ = 10² cm⁻³ Cf. Lecture 6 \Rightarrow use of mass action law at thermal equilibrium + full ionization of impurities (+ charge $N_{\rm c}$ = 2.7 \times 10¹⁹ cm⁻³ and $N_{\rm v}$ = 1.1 \times 10¹⁹ cm⁻³ neutrality condition)

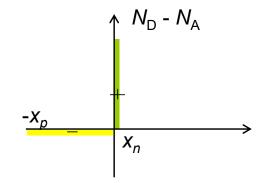
We find:

$$eV_{bi} = 0.96 \text{ eV} \qquad eV_{bi} = E_{g} - k_{B}T \ln \left(\frac{N_{v}N_{c}}{N_{A}N_{D}}\right) \qquad \qquad \varepsilon = \varepsilon_{0}\varepsilon_{r}$$

$$\varepsilon_{0} = 8.85 \times 10^{-12} \text{ F m}^{-1}$$

$$W = 50 \text{ nm} \qquad W = \sqrt{\frac{2\varepsilon}{e} \left(\frac{N_{A} + N_{D}}{N_{A}N_{D}}\right)} V_{bi} \qquad \qquad \varepsilon_{r} = 11.9$$

$$e = 1.6 \times 10^{-19} \text{ C}$$


$$E_{\rm max} = 3.8 \times 10^5 \, {\rm V \, cm^{-1}}$$
 $E_{\rm max} = 2 V_{\rm bi} \, / \, W$

Other example: $N_A = N_D = 10^{15} \text{ cm}^{-3}$, $eV_{bi} = 0.61 \text{ eV}$, $W = 1.2 \text{ }\mu\text{m}$

Space charge in the *n*-type and *p*-type regions

$$x_n = N_A/(N_D + N_A)W$$

$$x_p = N_D/(N_D + N_A)W$$

If
$$N_D >> N_A$$
 then

$$W = \sqrt{\frac{2\varepsilon}{e} \frac{V_{bi}}{N_A}} \quad \text{and } x_p = W$$

One-sided abrupt junction approximation

The space charge mostly extends in the less doped region