Lecture 8 — 06/11/2024

The p-n junction
- Basic considerations

- At thermal equilibrium
- Space charge region
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Summary Lecture 7

Carrier mobility at low electric field
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Out of equilibrium semiconductors

due to excess carriers injected by
electrical or optical means
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continuity equations
for electrons/holes

Carrier mobility at high electric field
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Carriers' effective temperature
Lattice (phonon) temperature

L_1 1+ \/1 + %(”OE> ¢ ... velocity of sound
CS

8E vs ... Saturation velocity
ph 7
Vs = ~ 10" cm/s :
3mm* E,n ... optical-phonon energy
G= G + G

processes to restore equilibrium (pn = n}):

2

pn > nj ... recombination, rate R

pn <nf ... thermal generation, rate G,



Summary Lecture 7

Band-to-band recombination — photon emission = Band-to-band recombination — Auger-Meitner process

Far more probable in direct-bandgap SCs At play in both direct- and indirect-bandgap SCs
weak to moderate injection ( < 1018 cm™3): high injection ( > 1018 cm~3):
(0 thermal equilibrium p2n p-type p ~ Ap
n—ng 2 r ~ A
p-type » = p, n<p n-type n = An
R—Gp=1 'n
i ?tllgetrpr;)cess
P~ Do n-type n=n, . = . E,
k Tp :> PR Photon emission
(radiative)
Single-level recombination — traps 5 5 Ey
Dominating at low injection in both dn _ GL+R, =G +Ton —Tor don
direct- and indirect-bandgap SCs dt ’ ’
—_ —_ —_— X J— -
(1) electron capture from CB Ry =Ten = Ten = Ven0n(nNy — neNp') . Ee
(2) electron emission to CB =
(3) hole capture from VB N =N(1—f), Ng=NSf ’ .

(4) hole emission to VB
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15t p-n junction and 15t transistor (1947)

First transistor Bardeen, Shockley and Brattain 1947
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Point contact transistor
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Fic. 1. Schematlbe of seml-condostor triode,

J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948)
> 520 citations
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Transistor: past... and ...future

- 100 um j_, In.iegraied Circuit
CMOS transistor "] s
invention (1960) 10w
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Quantam Devices i E \\“\\
1 nm ——e— =
First integrated circuit (few transistors) 0.1 am R —
H : 960 980 2000 2020 2040
Jack Kilby, Tl - 1958 — Nobel prize (2000) = 1 s

Dimension: 11 x 1.6 mm? National technology roadmap for semiconductors (NTRS)

Now ITRS (I: international)
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Y. He et al., Nature 571, 371 (2019)
> 230 citations
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p-n junction

Some applications

Bipolar transistors
 LEDs

Laser diodes
Solar cells
Photodetectors
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p-n junction (2D-geometry)

Made of two adjacent semiconductor layers which are p-type and n-type doped
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A p-n junction behaves like
a diode (rectifying behavior)

Early historical account detailed in: W. Shockley, Bell Syst. Tech. J. 28, 435 (1949);
C.-T. Sah, R. N. Noyce, and W. Shockley, Proc. IRE 45, 1228 (1957)

> 1600 citations
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p-n junction (research, nanowire geometry)

Semiconductor nanowires (candidates for tunnel-FETSs)

|| N TR Subthresholq swing < 60 mV/decade at 300 K
LR T | (cf. forthcoming Lecture 9)

Si0,

Drain

A. M. lonescu and H. Riel, Nature 479, 329 (2011)
> 2200 citations
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p-n junction fabrication

During growth by impurity incorporation

SEM image of a p-n junction (LED)
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p-n junction fabrication

Post-growth: by impurity diffusion or implantation
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p-n junction fabrication

Post-growth: by impurity diffusion or implantation

Dopant gas
or
accelerated impurity ions

n=Si \
(a) | Resist

5i0,

n—Si

Si0, (a)

n—=Si

" \
Resist

Si0, S5i0,

p-=5i
n—-Si 7—Si
Resist
Si0; ©
b e
n—Si ®)
(c)

J\ 50,
| Metal | Si0,

n-Si \ p==5i ]

n—Si
(e} Metal
Resist
S0, 0
—_— Fig.2 (a) The wafer after the development. (b) The wafer after SiO, removal. (¢) The final
' result after a complete lithography process. (d) A p—n junction is formed in the diffusion or
() implantation process. (¢) The wafer after metallization. (f) A p-n junction after the complete

. i ) pruct‘sses.
Fig. 1 (a) A bare n-type Si wafer. (b) An oxidized Si wafer by dry or wet oxidation.
(c) Applicutiun of resist. (d) Resist exposure Lhroug_(ll the mask.
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Optical lithography

1.0 Processors
Intel 486 33 MHz
0.7
05+ 365 nm Pentium 66—100 MHz
035+ \ Pentium | 300 MHz | 2
& g
g 025+ \ Pentium Il 600 MHz | 3
= B
g 0.18 - i Pentium NV 1-2GHz | 2
g = 3
S 013+ 3
5 5]
'§ 0.10 - 3 GHz
193 nm
0.07 — Immersion
L Future processors
s 4-10 GHz
0.035 —

| l l | | | | | I |
86 88 9 92 94 9% 98 00 02 04 06 08 10 v

Year
Speed/power tradeoff = CPU underclocking can save a lot of power while sacrificing
much less the performance (motivation for multicore CPUs)

Example: Intel chips (2008), single core underclocking by 20% will save half the power for

13% less performance !
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Optical lithography

The fabrication of integrated circuits
(ICs) relies on expensive
photolithography systems

Patterns optically imaged onto Si wafers
covered with a photoresist

» Leading company: ASML (Dutch), >3/4 of the market = provider of immersion and EUV lithography
machines (sole supplier of EUV tools, market capitalization in 2024 ~US$400 billion)

« Other players: Canon, Nikon, Ultratech (now part of Veeco Instr.) (USA)

Optical lithography machines set the transistor technology node, i.e., the typical half-
pitch (= half distance between identical features in an array) for a memory cell.

22 nm technology node for the CMOS process, e.g., multicore processors. 14 nm
technology node introduced by Intel at the end of 2014 (broad OEM, 2015)
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Optical lithography

New generation of wafer stepper:

» Lens-free optical lithography

» All-mirror-based technology operating in the extreme UV (13.5 nm), hence under vacuum
(to avoid air absorption)

* Used by Intel, IBM, Samsung and TSMC

« Cost up to 200 M$/unit for the Twinscan NXE:3600D

EUV lithography scanner — Twinscan NXE:3400

Semiconductor physics and light-matter interaction
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p-n junction: how does it work?

n-type

Case of the abrupt p-n junction (metallurgical junction)
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Band diagram

* At thermal equilibrium

p-type n-type

« Concentration gradients = diffusion currents

» Uncompensated ionized impurities = built-in electric field = drift currents
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p-n junction at equilibrium

« Diffusion and drift currents

pd W ~
b ” Space charge
— — -~ region/depletion region
Jn,drift - GnE - elunnE 8*—8 /
) — n
Jn,diff = eDn gl'ad n /7}7' } @‘*‘@ _‘L\

Einstein relation:

D kT| .. . L
— =——| Diffusion coefficient in cm? s Number current
e .y
= Diffusion ;- densities !
Drift
> X
J, =—€l,
Link between number (j) and and
electrical (J) current densities: .
J,=¢€j,
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Band diagram

« At thermal equilibrium
The Fermi level is constant throughout the structure (details to be seen in the series)

J, = Jnaritt + Inait = 0 (also true for holes)

NO “net” current flowing through the junction

To be verified in the exercises

dn dE. = S , . . .
J =eunkE+eD ™ - ,unnd— =0| Keep in mind that Ohm’s law is valid provided v, << v;!
X X
1D case

Full compensation between the drift and diffusion currents !
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Band diagram

Space charge

Dopage p } Dopage n
-région neutre p_——— charge d’espace |~ région neutre n
Iy
{a) elN
] oXG Y e
Fixed charges 8 8 % 8
CICICICN &
1 OO0Q|° *
CICXC)
000
LEG B
—eN,
(b) charges libres
ep (x) g eN,
Mobile charges
b
0 \ X
-eN |— S een®
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Band diagram

« At thermal equilibrium ; "
Built-in potential: _I v
N : s g
eVy, = (Er- E),- (Er- E), = energy loss across the junction LELBS ek
with ! . :
Nc ) NV 2| pbulkregion ' Depletion region ' n-bulk region |
E.=E _’IfB_T_l{lI___fv:': kgT In b (n=Npandp=N,)

p =(/:v’V ;Xp[—(EF ~E)/ kB\T\IéXp[—(Ei —E,)/ kT |=nexp| (E, —E)/k,T]

Similar treatment-for electrons

If we consider that all impurities are ionized

NN
e\/bi:Eg—kBTln( . °J Built-in barrier

AND

This built-in potential V,; is the consequence of the space charge due to carrier diffusion
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Space charge region

Abrupt junction Poisson’s equation to be solved as a function of position:

~

N\ ND - NA
Metallurgical

junction \A}N
- -+

v

p-type n-type

g __p(x) | | N

T Electrostatic potential vs position
dx E.E,
d’¢ _ N,

= —x <

2 e - for x,<x<0 e=ce,
d*¢ Ny )
el o 0SS [T s

Charge neutrality: x,N, = x,Np

Space charge region extent: W= x, + x,

Electric field in the space charge region

d N, X+ X,
E(x):—d—f:—e (5 )[—xp,O]

E(x)=—20 _ Mo lx=x)

0,
dx £ [ Xn ]
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Space charge region

Abrupt junction
A ND'NA Vbi Z—J-xn E(x)dx
N. ¢o0 N, ¢x
=e—AI (x+x )dx—e—D (x—x
-Xp . & - & 0
X, i 2 2
—e Nax, +e NpX,
2¢ 2¢
tE _ Emaxxp Emax'xn
T 2 2
“Emax Note that: V. _1L _[ " “x pdx} dx
EV x| Ix

p-type n-type

Valid both at thermal equilibrium
and out of equilibrium
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Space charge region

Abrupt junction

A Np - Ny

v

-E

max

p-type n-type
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Charge neutrality: x,N, = x,Np

Space charge extent: W= x, + x,

> W= x, (1+Np/Np) = X,(Np+Na)/Np

W=x,....

N, +N,

W:\/Zg
e

|

NA ND

jvbi

All the parameters entering
into this expression are known
beforehand!

Extent of the space charge region
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Space charge region

Example: silicon-based p-n junction at 300 K

law at thermal equilibrium + full
ionization of impurities (+ charge
N.=2.7x10""cm3and N,= 1.1 x 10" cm™3 neutrality condition)

n-type: Np= 10" cm=3 and p = n?/Ny = 102 cm'3} Cf. Lecture 6 = use of mass action

p-type: N,= 10" cm3 and n = n?/N,= 102 cm-3

We find:
NVNC —_—
eVbi = 096 eV e‘/bi = Eg _kBTln E = 806}.
AND
& =8.85x 1012 F m"!
W =50 nm W - 28(NA+ND]VM £=11.9
e \ NN, e=16x10"1°C

Epax=38x10°Vem?' E_ =2V /W

Other example: Ny = Ny = 10" cm3, eV,;=0.61 eV, W=1.2 ym

Semiconductor physics and light-matter interaction
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Space charge region

Space charge in the n-type and p-type regions

~

N Np - N,
X.= N/ (Ng+N, )W

X, = Np/(Np+N)W

If Np>> N, then

p-type n-type

\ One-sided abrupt junction

approximation

The space charge mostly extends in the less doped region
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